二次函数的概念及y=ax^2(a≠0)、y=ax^2+c(a≠0)的图象与性质

发布时间:2024-12-13 08:56

重难点

1. 掌握二次函数的概念,会用二次函数的定义识别二次函数,能根据实际问题列出简单的二次函数关系式;

2.用类比的方法学习二次函数几种常见的解析式之间的性质.会应用相关的性质解题。


例题精讲

模块一 二次函数的定义

1. 一般地,形如y=ax^2+bx+c(a/b/c为常数,a≠0)的函数称为x的二次函数,其中x为自变量,y为因变量,a/b/c分别为二次函数的二次项、一次项和常数项系数.

2. 任何二次函数都可以整理成y=ax^2+bx+c(a/b/c为常数,a≠0)的形式.

3. 判断函数是否为二次函数的方法:

① 含有一个变量,且自变量的最高次数为2;

② 二次项系数不等于0;

③ 等式两边都是整式.

4.二次函数自变量x的取值范围是全体实数.

【例1】 下列函数中是二次函数的是( )

A. y=1/(x^2+x+1) B.y=x^3+5x^2

C. y=(x-5)^2-x^2 D.y=2x-7x^2

【难度】1星

【解析】首先选出整式函数,再整理成一般形式,根据二次函数的定义条件判定即可

【答案】D

【例2】 下列说法正确的是( )

A.二次函数的自变量的取值范围是非零实数

B.圆的面积公式s=πr^2中,s是r的二次函数

C.y=(x-1)(x+6)不是二次函数

D.y=6-4x^2中一次项系数为1

【难度】1星

【解析】考查二次函数的基本知识点。

【答案】B

模块二 二次函数y=ax^2(a≠0)的图象与性质


1. 顶点坐标:原点(0,0)

2. 对称轴:x=0,或说y轴

3. 图象:抛物线

4. 图象与a的符号关系:

① 当a>0时<=>抛物线开口向上<=>顶点为其最低点;

② 当a>0时<=>抛物线开口向下<=>顶点为其最高点.

5. 抛物线的开口大小与|a|有关,|a|越大,开口越小;|a|越小,开口越大。

6. 二次函数y=ax^2(a≠0)性质对比

当a>0时


开口向上,顶点坐标(0,0)对称轴y轴

x>0时,y随x的增大而增大;

x<0时,y随x的增大而减小;

x=0时,y有最小值0;

当a<0时


开口向下,顶点坐标(0,0)对称轴y轴

x>0时,y随x的增大而减小;

x<0时,y随x的增大而增大;

x=0时,y有最大值0;

【例3】 在同一平面直角坐标系中作出下列函数图象:y=2x^2;y=-2x^2;y=3x^2;y=-3x^2;并探究二次函数开口大小与a之间的关系


【难度】2星

【解析】作图要按照列表、描点、连线的方法来做;二次函数作图象要用五点法,自变量要既取正数,又取负数。

【答案】列表略,图略

【小结】抛物线的开口方向与a的符号有关,当a>0时,开口向上;a<0时,开口向下;

抛物线的开口大小与|a|有关,|a|越大,开口越小;|a|越小,开口越大。

(2016·玉林)抛物线y=0.5x^2,y=x^2,y=-x^2的共同性质:① 都是开口向上;② 都以点(0,0)为顶点;③ 都以y轴为对称轴;④ 都关于x轴对称.其中正确的有(  )

A. 1个  B. 2个 C. 3个 D. 4个

模块三 二次函数y=ax^2+c(a≠0)的图象与性质

1. 顶点坐标:原点(0,c)

2. 对称轴:x=0( y轴)

3. 函数y=ax^2+c的图像与a的符号关系:

① 当a>0时<=>抛物线开口向上<=>顶点为其最低点;

② 当a<0时<=>抛物线开口向下<=>顶点为其最高点.

4. 函数y=ax^2+c的图像可以看做是y=ax^2由函数的图像向上或向下平移|c|个单位得到的;c>0时,向上平移;c<0时,向下平移。

5. c决定了函数图象与y轴的交点坐标:(0,c)

【例4】 函数y=2x^2-3的图象可以看做y=2x^2是函数的图象向 平移 个单位得到的。

【难度】1星

【解析】考查函数y=ax^2+c与y=ax^2之间的关系。

【答案】向下平移3个单位

(2018·淮安)将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________

(2017·恩施州)如图,抛物线y=ax2+c过点(-2,2),(4,5),过y轴上定点F的直线l:y=kx+2与抛物线交于A,B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.

(1) 求抛物线对应的函数解析式;

(2) 当点B在抛物线上运动时,判断线段BF与BC的数量关系,并证明你的判断;

(3) P为y轴上一点,若以B,C,F,P为顶点的四边形是菱形,设点P(0,m),求自然数m的值.


特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

网址:二次函数的概念及y=ax^2(a≠0)、y=ax^2+c(a≠0)的图象与性质 https://mxgxt.com/news/view/179768

相关内容

已知z=f(2xy,x^2+y^2,x^3),且z对x,y的所有二阶偏导数
数学初一上册1、观察下列等式:7的1次方=7,7的2次方=49, 爱问知识人
下列函数关系y中.变量y与x成正比例函数关系的是( ) A.y=x2 B.y= C.y=x
y=x^3导数y'=3x^2这个求解过程是? 爱问知识人
为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.
r=a(1
sin(A/2)=√((1
剖析C语言中a=a+++++a的无聊问题
关于明星投票系统的作业分享
手把手教你用几行Python和消费数据做客户细分

随便看看