黑炭在环境中的分布及其环境效应研究进展

发布时间:2025-01-08 19:26

摘要:黑炭(black carbon,BC)主要来源于化石燃料和生物质不完全燃烧。随着经济快速发展,BC广泛存在于环境中,通过各种途径进入生物体,并对其造成严重危害。本文对BC的分布和生物毒性研究进行了总结概述,以期掌握BC的环境行为和毒性,从而减少环境污染和对生物的伤害。总的来说,BC在土壤、水体和空气等多种环境介质中广泛分布,且在城市化和工业化水平较高的地区分布尤为广泛。另外,BC对生物体的毒性作用受到很多方面的影响,如BC浓度、粒径、生物体种类、土壤类型等。最后,本文从环境健康出发,对现阶段BC研究进行了展望。

关键词:黑炭 / 分布 / 土壤 / 大气 / 水体 / 环境风险

Abstract:Black carbon (BC) is mainly produced by incomplete combustion of fossil fuels and biomass. With the rapid economic development, BC widely exists in the environment which can invade the organism in a variety of ways and can cause serious risk. In this paper, the distribution and biological toxicity of BC were summarized, in order to understand the environmental behavior and toxicity of BC, thus to reduce environmental pollution and minimize the damage to the organisms. In general, BC was widely distributed in soil, water, air and other environmental media, especially in the areas with high level of urbanization and industrialization. In addition, the toxicity of BC to organisms was affected by many factors, such as BC concentration, particle size, species of organisms, soil type and so on. In the end, this paper looked forward to the current BC research from the perspective of environmental health.

图 1 环境中黑炭的分布及效应

Figure 1. Distribution and effect of black carbon in the environment

图 2 蛋白核小球藻在不同浓度BC培养过程中,藻密度和叶绿素的变化

Figure 2. Changes in algal density and chlorophyll in Chlorella pyrenoidosa cultured with different concentrations of BC

[1]FANG Y, CHEN Y J, TIAN C G, et al. Cycling and budgets of organic and black carbon in coastal Bohai sea, China: Impacts of natural and anthropogenic perturbations [J]. Global Biogeochemical Cycles, 2018, 32(6): 971-986. doi: 10.1029/2017GB005863 [2]JIAO N Z, LIANG Y T, ZHANG Y Y, et al. Carbon pools and fluxes in the China Seas and adjacent oceans [J]. Science China Earth Sciences, 2018, 61(11): 1535-1563. doi: 10.1007/s11430-018-9190-x [3]AUTRAN P O, DEJOIE C, BORDET P, et al. Revealing the nature of black pigments used on ancient Egyptian papyri from Champollion collection [J]. Analytical Chemistry, 2021, 93(2): 1135-1142. doi: 10.1021/acs.analchem.0c04178 [4]AL-GHAMDI A A, AL-HARTOMY O A, AL-SOLAMY F R, et al. Natural rubber based composites comprising different types of carbon-silica hybrid fillers. comparative study on their electric, dielectric and microwave properties, and possible applications [J]. Materials Sciences and Applications, 2016, 7(6): 295-306. doi: 10.4236/msa.2016.76027 [5]KOKHANOVSKAYA O A, RAZDYAKONOVA G I, LIKHOLOBOV V A. New applications of carbon black. an aerogel-like composite material with heat insulating properties [J]. Procedia Engineering, 2016, 152: 540-544. doi: 10.1016/j.proeng.2016.07.652 [6]KHARE M, GUPTA R K, GHOSH S S, et al. Effect of carbon black on mechanical properties of Al7075/Al2O3/B4C reinforced aluminum composite [J]. Materials Today:Proceedings, 2020, 28: 2498-2500. doi: 10.1016/j.matpr.2020.04.803 [7]International Carbon Black Association (ICBA), 2018. Carbon black user’s guide [2019-3-13]. http://www.carbon-black.org/index.php/carbon-black-uses. [8]ABNEY R B, BERHE A A. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil [J]. Frontiers in Earth Science, 2018, 6: 26. doi: 10.3389/feart.2018.00026 [9]HUANG C C, LU L F, LI Y, et al. Anthropogenic-driven alterations in black carbon sequestration and the structure in a deep plateau lake [J]. Environmental Science & Technology, 2021, 55(9): 6467-6475. [10]CHEN L, ZHANG F, YAN P, et al. The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere [J]. Environmental Pollution, 2020, 263: 114507. doi: 10.1016/j.envpol.2020.114507 [11]QI Y Z, FU W J, TIAN J W, et al. Dissolved black carbon is not likely a significant refractory organic carbon pool in rivers and oceans [J]. Nature Communications, 2020, 11: 5051. doi: 10.1038/s41467-020-18808-8 [12]FANG Y, CHEN Y J, HUANG G P, et al. Particulate and dissolved black carbon in coastal China seas: Spatiotemporal variations, dynamics, and potential implications [J]. Environmental Science & Technology, 2021, 55(1): 788-796. [13]QU X L, FU H Y, MAO J D, et al. Chemical and structural properties of dissolved black carbon released from biochars [J]. Carbon, 2016, 96: 759-767. doi: 10.1016/j.carbon.2015.09.106 [14]YLI-HALLA M, RIMHANEN K, MUURINEN J, et al. Low black carbon concentration in agricultural soils of central and northern Ethiopia [J]. Science of the Total Environment, 2018, 631/632: 1-6. doi: 10.1016/j.scitotenv.2018.02.284 [15]PANDEY S D, ROCHA L C, PEREIRA G, et al. Properties of carbon particles in archeological and natural Amazon rainforest soils [J]. CATENA, 2020, 194: 104687. doi: 10.1016/j.catena.2020.104687 [16]LI L L, WANG X J, FU H Y, et al. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L. ) [J]. Environmental Science & Technology, 2020, 54(18): 11137-11145. [17]JANSSEN E M L, BECKINGHAM B A. Biological responses to activated carbon amendments in sediment remediation [J]. Environmental Science & Technology, 2013, 47(14): 7595-7607. [18]WANG Y Y, JING X R, LI L L, et al. Biotoxicity evaluations of three typical biochars using a simulated system of fast pyrolytic biochar extracts on organisms of three kingdoms [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 481-488. [19]HALE S E, JENSEN J, JAKOB L, et al. Short-term effect of the soil amendments activated carbon, biochar, and ferric oxyhydroxide on bacteria and invertebrates [J]. Environmental Science & Technology, 2013, 47(15): 8674-8683. [20]KIM K, WANG C H, OK Y S, et al. Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): Combined toxicity on heart function by nickel and vanadium [J]. Journal of Hazardous Materials, 2019, 363: 127-137. doi: 10.1016/j.jhazmat.2018.09.089 [21]CHEN J, SUN X, LI L, et al. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar [J]. European Journal of Soil Science, 2016, 67(6): 857-867. doi: 10.1111/ejss.12388 [22]TIAN J, WANG J Y, DIPPOLD M, et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil [J]. Science of the Total Environment, 2016, 556: 89-97. doi: 10.1016/j.scitotenv.2016.03.010 [23]ALAN ROEBUCK J Jr, PODGORSKI D C Jr, WAGNER S Jr, et al. Photodissolution of charcoal and fire-impacted soil as a potential source of dissolved black carbon in aquatic environments [J]. Organic Geochemistry, 2017, 112: 16-21. doi: 10.1016/j.orggeochem.2017.06.018 [24]CHENG Y, ENGLING G, MOOSMÜLLER H, et al. Light absorption by biomass burning source emissions [J]. Atmospheric Environment, 2016, 127: 347-354. doi: 10.1016/j.atmosenv.2015.12.045 [25]PETZOLD A, OGREN J A, FIEBIG M, et al. Recommendations for reporting “black carbon” measurements [J]. Atmospheric Chemistry and Physics, 2013, 13(16): 8365-8379. doi: 10.5194/acp-13-8365-2013 [26]SINGH V, RAVINDRA K, SAHU L, et al. Trends of atmospheric black carbon concentration over the United Kingdom [J]. Atmospheric Environment, 2018, 178: 148-157. [27]HUANG X, NIE W, DING A. Effects of aerosol-radiation interaction on cloud and precipitation during biomass burning season in East China; proceedings of the Agu Fall Meeting, F, 2016 [C]. [28]MA Z W, LIU R Y, LIU Y, et al. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective [J]. Atmospheric Chemistry and Physics, 2019, 19(10): 6861-6877. doi: 10.5194/acp-19-6861-2019 [29]ZHENG H, KONG S F, ZHENG M M, et al. A 5.5-year observations of black carbon aerosol at a megacity in Central China: Levels, sources, and variation trends [J]. Atmospheric Environment, 2020, 232: 117581. doi: 10.1016/j.atmosenv.2020.117581 [30]MOUSAVI A, SOWLAT M H, LOVETT C, et al. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy [J]. Atmospheric Environment, 2019, 203: 252-261. doi: 10.1016/j.atmosenv.2019.02.009 [31]GRAMSCH E, MUÑOZ A, LANGNER J, et al. Black carbon transport between Santiago de Chile and glaciers in the Andes Mountains [J]. Atmospheric Environment, 2020, 232: 117546. doi: 10.1016/j.atmosenv.2020.117546 [32]CHEN W, TIAN H M, ZHAO H M, et al. Multichannel characteristics of absorbing aerosols in Xuzhou and implication of black carbon [J]. Science of the Total Environment, 2020, 714: 136820. doi: 10.1016/j.scitotenv.2020.136820 [33]ZHANG X L, RAO R Z, HUANG Y B, et al. Black carbon aerosols in urban central China [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150: 3-11. doi: 10.1016/j.jqsrt.2014.03.006 [34]ZHU C S, CAO J J, XU B Q, et al. Black carbon aerosols at mt. Muztagh ata, a high-altitude location in the western Tibetan Plateau [J]. Aerosol and Air Quality Research, 2016, 16(3): 752-763. doi: 10.4209/aaqr.2015.04.0255 [35]BOND T C. Bounding the role of black carbon in the climate system —A summary assessment [J]. The Magazine for Environmental Managers, 2011(APRa): 11-13. [36]RANA A, JIA S G, SARKAR S. Black carbon aerosol in India: A comprehensive review of current status and future prospects [J]. Atmospheric Research, 2019, 218: 207-230. doi: 10.1016/j.atmosres.2018.12.002 [37]KUTZNER R D, von SCHNEIDEMESSER E, KUIK F, et al. Long-term monitoring of black carbon across Germany [J]. Atmospheric Environment, 2018, 185: 41-52. doi: 10.1016/j.atmosenv.2018.04.039 [38]BECERRIL-VALLE M, COZ E, PRÉVÔT A S H, et al. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain [J]. Atmospheric Environment, 2017, 169: 36-53. doi: 10.1016/j.atmosenv.2017.09.014 [39]REN P, LIU Y G, SHI X F, et al. Sources and sink of black carbon in Arctic Ocean sediments [J]. Science of the Total Environment, 2019, 689: 912-920. doi: 10.1016/j.scitotenv.2019.06.437 [40]BIRD M I, WYNN J G, SAIZ G, et al. The pyrogenic carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 273-298. doi: 10.1146/annurev-earth-060614-105038 [41]JONES M W, SANTÍN C, WERF G R, et al. Global fire emissions buffered by the production of pyrogenic carbon [J]. Nature Geoscience, 2019, 12(9): 742-747. doi: 10.1038/s41561-019-0403-x [42]WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076 [43]SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration [J]. Soil Biology and Biochemistry, 2010, 42(12): 2345-2347. doi: 10.1016/j.soilbio.2010.09.013 [44]COPPOLA A I, DRUFFEL E R M. Cycling of black carbon in the ocean [J]. Geophysical Research Letters, 2016, 43(9): 4477-4482. doi: 10.1002/2016GL068574 [45]FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: Reactive oxygen species generation and phototransformation [J]. Environmental Science & Technology, 2016, 50(3): 1218-1226. [46]ROEBUCK J A Jr, MEDEIROS P M, LETOURNEAU M L, et al. Hydrological controls on the seasonal variability of dissolved and particulate black carbon in the Altamaha river, GA [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(9): 3055-3071. doi: 10.1029/2018JG004406 [47]BARRETT T E, PONETTE-GONZÁLEZ A G, RINDY J E, et al. Wet deposition of black carbon: A synthesis [J]. Atmospheric Environment, 2019, 213: 558-567. doi: 10.1016/j.atmosenv.2019.06.033 [48]HADLEY O L, CORRIGAN C E, KIRCHSTETTER T W, et al. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat [J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7505-7513. doi: 10.5194/acp-10-7505-2010 [49]QI L, WANG S X. Sources of black carbon in the atmosphere and in snow in the Arctic [J]. Science of the Total Environment, 2019, 691: 442-454. doi: 10.1016/j.scitotenv.2019.07.073 [50]DRAKE T W, WAGNER S, STUBBINS A, et al. Du feu à l'Eau: Source and flux of dissolved black carbon from the Congo river [J]. Global Biogeochemical Cycles, 2020, 34(8): e2020GB006560. doi: 10.1029/2020gb006560 [51]ESTAPA M L, MAYER L M. Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions [J]. Marine Chemistry, 2010, 122(1/2/3/4): 138-147. [52]IDE J, OHASHI M, TAKAHASHI K, et al. Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland [J]. Scientific Reports, 2017, 7: 42102. doi: 10.1038/srep42102 [53]BAO H Y, NIGGEMANN J, LUO L, et al. Aerosols as a source of dissolved black carbon to the ocean [J]. Nature Communications, 2017, 8: 510. doi: 10.1038/s41467-017-00437-3 [54]YANG W F, GUO L D. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves [J]. Continental Shelf Research, 2018, 155: 1-10. doi: 10.1016/j.csr.2018.01.008 [55]NGUYEN B T, LEHMANN J, HOCKADAY W C, et al. Temperature sensitivity of black carbon decomposition and oxidation [J]. Environmental Science & Technology, 2010, 44(9): 3324-3331. [56]XIA X H, DONG J W, WANG M H, et al. Effect of water-sediment regulation of the Xiaolangdi reservoir on the concentrations, characteristics, and fluxes of suspended sediment and organic carbon in the Yellow River [J]. Science of the Total Environment, 2016, 571: 487-497. doi: 10.1016/j.scitotenv.2016.07.015 [57]OEN A M P, CORNELISSEN G, BREEDVELD G D. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments [J]. Environmental Pollution, 2006, 141(2): 370-380. doi: 10.1016/j.envpol.2005.08.033 [58]WANG X S. Black carbon in urban topsoils of Xuzhou (China): Environmental implication and magnetic proxy [J]. Environmental Monitoring and Assessment, 2010, 163(1/2/3/4): 41-47. [59]LIU S D, XIA X H, ZHAI Y W, et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 2011, 82(2): 223-228. doi: 10.1016/j.chemosphere.2010.10.017 [60]ZHAN C L, CAO J J, HAN Y M, et al. Spatial distributions and sequestrations of organic carbon and black carbon in soils from the Chinese loess plateau [J]. Science of the Total Environment, 2013, 465: 255-266. doi: 10.1016/j.scitotenv.2012.10.113 [61]GAO C, KNORR K H, YU Z G, et al. Black carbon deposition and storage in peat soils of the Changbai Mountain, China [J]. Geoderma, 2016, 273: 98-105. doi: 10.1016/j.geoderma.2016.03.021 [62]DELUCA T H, PINGREE M R A, GAO S. Assessing soil biological health in forest soils[M]//Global Change and Forest Soils. Amsterdam: Elsevier, 2019: 397-426. [63]FANG Y Y, SINGH B, SINGH B P. Effect of temperature on biochar priming effects and its stability in soils [J]. Soil Biology and Biochemistry, 2015, 80: 136-145. doi: 10.1016/j.soilbio.2014.10.006 [64]RECHBERGER M V, KLOSS S, RENNHOFER H, et al. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil [J]. Carbon, 2017, 115: 209-219. doi: 10.1016/j.carbon.2016.12.096 [65]WANG J Y, XIONG Z Q, KUZYAKOV Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects [J]. GCB Bioenergy, 2016, 8(3): 512-523. doi: 10.1111/gcbb.12266 [66]HUANG W T, HU Y M, CHANG Y, et al. Effects of fire severity and topography on soil black carbon accumulation in boreal forest of northeast China [J]. Forests, 2018, 9(7): 408. doi: 10.3390/f9070408 [67]QI F J, NAIDU R, BOLAN N S, et al. Pyrogenic carbon in Australian soils [J]. Science of the Total Environment, 2017, 586: 849-857. doi: 10.1016/j.scitotenv.2017.02.064 [68]LEHNDORFF E, ROTH P J, CAO Z H, et al. Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China [J]. Global Change Biology, 2014, 20(6): 1968-1978. doi: 10.1111/gcb.12468 [69]PURAKAYASTHA T J, DAS K C, GASKIN J, et al. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils [J]. Soil and Tillage Research, 2016, 155: 107-115. doi: 10.1016/j.still.2015.07.011 [70]LIU Y H, WANG X S, GUO Y H, et al. Association of black carbon with heavy metals and magnetic properties in soils adjacent to a cement plant, Xuzhou (China) [J]. Journal of Applied Geophysics, 2019, 170: 103802. doi: 10.1016/j.jappgeo.2019.06.018 [71]TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. doi: 10.1016/j.rser.2015.10.122 [72]LIAN F, XING B S. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk [J]. Environmental Science & Technology, 2017, 51(23): 13517-13532. [73]ANAWAR H M, AKTER F, SOLAIMAN Z M, et al. Biochar: an emerging Panacea for remediation of soil contaminants from mining, industry and sewage wastes [J]. Pedosphere, 2015, 25(5): 654-665. doi: 10.1016/S1002-0160(15)30046-1 [74]CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Effect of biochar on chemical properties of acidic soil [J]. Archives of Agronomy and Soil Science, 2014, 60(3): 393-404. doi: 10.1080/03650340.2013.789870 [75]LU S G, SUN F F, ZONG Y T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol) [J]. CATENA, 2014, 114: 37-44. doi: 10.1016/j.catena.2013.10.014 [76]WANG L W, O’CONNOR D, RINKLEBE J, et al. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications [J]. Environmental Science & Technology, 2020, 54(23): 14797-14814. [77]NI N, WANG F, SONG Y, et al. Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: Degradation stimulation vs immobilization [J]. Chemosphere, 2018, 196: 288-296. doi: 10.1016/j.chemosphere.2017.12.192 [78]LOU L P, LUO L, WANG W, et al. Impact of black carbon originated from fly ash and soot on the toxicity of pentachlorophenol in sediment [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 474-479. [79]TAO Q, LI B, LI Q Q, et al. Simultaneous remediation of sediments contaminated with sulfamethoxazole and cadmium using magnesium-modified biochar derived from Thalia dealbata [J]. Science of the Total Environment, 2019, 659: 1448-1456. doi: 10.1016/j.scitotenv.2018.12.361 [80]MARKO G, MALETIĆ S, BELJIN J, et al. Lindane and hexachlorobenzene sequestration and detoxification in contaminated sediment amended with carbon-rich sorbents [J]. Chemosphere, 2019, 220: 1033-1040. doi: 10.1016/j.chemosphere.2019.01.017 [81]CUI L Q, LI L Q, BIAN R J, et al. Short- and long-term biochar cadmium and lead immobilization mechanisms [J]. Environments, 2020, 7(7): 53. doi: 10.3390/environments7070053 [82]MICHAŁ K, OLESZCZUK P. Effect of activated carbon or biochars on toxicity of different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and heavy metals [J]. Environmental Toxicology and Chemistry, 2016, 35(5): 1321-1328. doi: 10.1002/etc.3246 [83]LI X G, XIAO J, SALAM M M A, et al. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil [J]. International Journal of Phytoremediation, 2021, 23(4): 387-399. doi: 10.1080/15226514.2020.1816893 [84]LIANG C F, GASCÓ G, FU S L, et al. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size [J]. Soil and Tillage Research, 2016, 164: 3-10. doi: 10.1016/j.still.2015.10.002 [85]JAKOB L, HARTNIK T, HENRIKSEN T, et al. PAH-sequestration capacity of granular and powder activated carbon amendments in soil, and their effects on earthworms and plants [J]. Chemosphere, 2012, 88(6): 699-705. doi: 10.1016/j.chemosphere.2012.03.080 [86]KIM W I, KUNHIKRISHNAN A, GO W R, et al. Influence of various biochars on the survival, growth, and oxidative DNA damage in the earthworm Eisenia fetida [J]. Korean Journal of Environmental Agriculture, 2014, 33(4): 231-238. doi: 10.5338/KJEA.2014.33.4.231 [87]GONG X Q, CAI L L, LI S Y, et al. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost [J]. Ecotoxicology and Environmental Safety, 2018, 156: 197-204. doi: 10.1016/j.ecoenv.2018.03.023 [88]ZHANG Q M, SALEEM M, WANG C X. Effects of biochar on the earthworm (Eisenia foetida) in soil contaminated with and/or without pesticide mesotrione [J]. Science of the Total Environment, 2019, 671: 52-58. doi: 10.1016/j.scitotenv.2019.03.364 [89]LU H F, BIAN R J, XIA X, et al. Legacy of soil health improvement with carbon increase following one time amendment of biochar in a paddy soil - A rice farm trial [J]. Geoderma, 2020, 376: 114567. doi: 10.1016/j.geoderma.2020.114567 [90]ANASONYE F, TAMMEORG P, PARSHINTSEV J, et al. Role of biochar and fungi on PAH sorption to soil rich in organic matter [J]. Water, Air, & Soil Pollution, 2018, 229(2): 1-14. [91]XIONG B J, ZHANG Y C, HOU Y W, et al. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar [J]. Chemosphere, 2017, 182: 316-324. doi: 10.1016/j.chemosphere.2017.05.020 [92]TU C, WEI J, GUAN F, et al. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil [J]. Environment International, 2020, 137: 105576. doi: 10.1016/j.envint.2020.105576 [93]ZHAO L, XIAO D L, LIU Y, et al. Biochar as simultaneous shelter, adsorbent, pH buffer, and substrate of Pseudomonas citronellolis to promote biodegradation of high concentrations of phenol in wastewater [J]. Water Research, 2020, 172: 115494. doi: 10.1016/j.watres.2020.115494 [94]THOMPSON K A, SHIMABUKU K K, KEARNS J P, et al. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment[J]. Environmental Science & Technology, 2016, 50(20): 11253-11262. [95]SMITH C R, BUZAN E M, LEE J W. Potential impact of biochar water-extractable substances on environmental sustainability[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 118-126. [96]OLESZCZUK P, JOŚKO I, KUŚMIERZ M. Biochar properties regarding to contaminants content and ecotoxicological assessment [J]. Journal of Hazardous Materials, 2013, 260: 375-382. doi: 10.1016/j.jhazmat.2013.05.044 [97]ZHANG C, SHAN B Q, JIANG S X, et al. Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment [J]. Journal of Hazardous Materials, 2019, 376: 48-57. doi: 10.1016/j.jhazmat.2019.05.010 [98]KUPRYIANCHYK D, REICHMAN E P, RAKOWSKA M I, et al. Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments [J]. Environmental Science & Technology, 2011, 45(19): 8567-8574. [99]EGHBALI BABADI F, BOONNOUN P, NOOTONG K, et al. Identification of carotenoids and chlorophylls from green algae Chlorococcum Humicola and extraction by liquefied dimethyl ether [J]. Food and Bioproducts Processing, 2020, 123: 296-303. doi: 10.1016/j.fbp.2020.07.008 [100]ZHANG Y, YANG R X, SI X H, et al. The adverse effect of biochar to aquatic algae- the role of free radicals [J]. Environmental Pollution, 2019, 248: 429-437. doi: 10.1016/j.envpol.2019.02.055 [101]LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings [J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. [102]GU P S, LI H Z, YE Q, et al. Intracity variability of particulate matter exposure is driven by carbonaceous sources and correlated with land-use variables [J]. Environmental Science & Technology, 2018, 52(20): 11545-11554. [103]ALEXEEFF S E, ROY A, SHAN J, et al. High-resolution mapping of traffic related air pollution with Google street view cars and incidence of cardiovascular events within neighborhoods in Oakland, CA [J]. Environmental Health, 2018, 17(1): 38. doi: 10.1186/s12940-018-0382-1 [104]HACHEM M, BENSEFA-COLAS L, LAHOUD N, et al. Cross-sectional study of in-vehicle exposure to ultrafine particles and black carbon inside Lebanese taxicabs [J]. Indoor Air, 2020, 30(6): 1308-1316. doi: 10.1111/ina.12703 [105]AMOUEI TORKMAHALLEH M, ZHIGULINA Z, MADIYAROVA T, et al. Exposure to fine, ultrafine particles and black carbon in two preschools in nur-sultan city of Kazakhstan [J]. Indoor Air, 2021, 31(4): 1178-1186. doi: 10.1111/ina.12799 [106]AMOUEI TORKMAHALLEH M, GORJINEZHAD S, UNLUEVCEK H S, et al. Review of factors impacting emission/concentration of cooking generated particulate matter [J]. Science of the Total Environment, 2017, 586: 1046-1056. doi: 10.1016/j.scitotenv.2017.02.088 [107]WONG G W, BRUNEKREEF B, ELLWOOD P, et al. Cooking fuels and prevalence of asthma: A global analysis of phase three of the International Study of Asthma and Allergies in Childhood (ISAAC) [J]. The Lancet Respiratory Medicine, 2013, 1(5): 386-394. doi: 10.1016/S2213-2600(13)70073-0 [108]RABITO F A, YANG Q, ZHANG H, et al. The association between short-term residential black carbon concentration on blood pressure in a general population sample [J]. Indoor Air, 2020, 30(4): 767-775. doi: 10.1111/ina.12651 [109]ERLANDSSON L, LINDGREN R, NÄÄV Å, et al. Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line [J]. Environmental Pollution, 2020, 264: 114790. doi: 10.1016/j.envpol.2020.114790 [110]LI X X, HUO M L, ZHAO L N, et al. Study of the effects of ultrafine carbon black on the structure and function of trypsin [J]. Journal of Molecular Recognition, 2021, 34(2): e2874. [111]LIU S Y, YANG R J, CHEN Y J, et al. Development of human lung induction models for air pollutants' toxicity assessment [J]. Environmental Science & Technology, 2021, 55(4): 2440-2451. [112]LIAN F, YU W C, ZHOU Q X, et al. Size matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments [J]. Environmental Science & Technology, 2020, 54(14): 8821-8829.

网址:黑炭在环境中的分布及其环境效应研究进展 https://mxgxt.com/news/view/700590

相关内容

女性服刑者的环境适应与再社会化研究
环境地质学
新媒体环境下企业明星代言的危机公关研究
半干旱草原温室气体排放/吸收与环境因子的关系研究
波特五力模型聚美优品竞争环境研究.doc
女性高管、环境信息披露质量与公司价值的关系研究
高酸性环境下825衬里复合管焊缝耐蚀性能研究
新媒体环境下传统文化的传播
新媒体环境下明星的生产与消费研究
硫酸盐气溶胶第一间接辐射强迫及气候效应的模拟研究

随便看看