社交网络的数据挖掘分析.doc免费全文阅读
闽江学院 本科毕业论文(设计) 题 目 社交网络的数据挖掘 学 号 系 别 软件学院 年 级 13级 专 业 软件工程 指导教师 职 称 讲师 完成日期 2015.4.23 闽江学院毕业论文(设计)诚信声明书 本人郑重声明: 声明人(签名): 年 月 日 With the development of information technology and economy more and more rapidly, social networking has become an indispensable part of peoples lives, the exchange of peoples daily life has a lot of big part is through the network, social networking sites to communicate, so the social network has become a new expensive network, researchers have begun to study how to get better in social the website information is becoming popular, people have begun to study the social networking site data mining technology. In order to obtain useful information in social networking sites, so data mining in a large number of social networking sites. The purpose of data mining and data warehouse is to in large amounts of data analysis has become a popular information. The fundamental success of social networking sites for data mining is data mining technology and data warehouse of large amounts of data processing results effectively, but also determines the social networking site for data mining is the key of success, the accurate information is to ensure the implementation of data mining. The bean, Facebook, Twitter and other mainstream social media sites the user data acquisition, calculation and statistical analysis, and focuses on the analysis of node degree (i.e. the number of a node and other nodes connected), distribution of node degree correlation. Key words: Data mining; Social network; Node degree; Correlation analysis 目录 第一章绪论5 1.1 研究背景和意义5 1.2 国内外研究现状5 1.3论文的结构安排和研究内容6 1.3.1三种权限6 1.3.2主要研究内容包括:6 1.3.3结构安排如下:6 第二章数据挖掘技术7 2.1数据挖掘论述7 2.2 数据挖掘技术7 2.2.1典型数据挖掘系统7 2.2.2数据挖掘概念8 2.2.3数据挖掘模式8 第三章数据挖掘技术研究9 3.1 目标数据9 3.2 数据的关联分析9 3.2.1关联分析的概念9 3.2.2 Apriori算法9 3.2.3事件驱动10 第四章模型建立和数据分析1111
网址:社交网络的数据挖掘分析.doc免费全文阅读 https://mxgxt.com/news/view/1473881
相关内容
基于数据挖掘的社交网络分析与挖掘.docx社交网络中的数据分析与挖掘.docx
网络社交媒体数据挖掘与情感分析
社交网络数据挖掘
社区社交网络大数据挖掘
基于数据挖掘的社交网络分析与研究
微博社交网络数据挖掘和用户权重分析.doc
社交网络数据分析
Facebook数据挖掘:探索社交网络的深度
网络社交平台数据的分析方法