人工智能在学习参与度识别中的应用现状与问题
当今,人工智能正在成为新一轮技术变革中的核心,其为学习参与度的识别提供着数据智能(如融合多类型的数据)与技术智能(如深度学习算法)的支持。特别是人工智能中的情感计算技术,可直接用于学习参与度的第二维度(情感投入)的评估,已引起了较广泛的关注。国外已有多名学者通过视频分析脸部特征,来评估学习者的学习参与度。国内的相关研究也已经开展,如,程萌萌等提出一种将表情识别与视线跟踪相结合,作为获取表情形式反馈信息的方法。该方法通过摄像头采集学习者面部图像,利用视线跟踪技术定位学习者当前的学习内容;利用表情识别技术监控学生的表情,判断学习者对当前学习内容的兴趣、注意力、知识点的理解和掌握情况,以此为及时调整教学活动、教学进度和方法提供依据,并为学习者提供个别化的学习环境。
孙波等基于面部表情识别的情感分析框架,通过将个体特征和表情特征分离开来,在表情子空间中进行表情识别,排除无关因素对表情识别的影响,提高了表情识别的准确率,并在三维虚拟学习平台Magic Learning的师生情感交互子系统上,实现了基于面部表情的学习者情感识别及情感干预。詹泽慧结合表情识别和眼动追踪技术,构建了基于智能Agent的远程学习者情感与认知识别模型,将眼动追踪与表情监控迭代识别、情感与认知识别过程相耦合,提高了远程学习者状态的识别准确率,改进了Agent对学习者的情感和认知支持。韩丽等结合现有智能监控设备设计的课堂教学评价系统,利用多姿态人脸检测和面部表情识别技术,及时获取学生在学习过程中的情绪变化,反馈给教师,帮助教师准确全面地掌握所有学生在课堂教学中的参与情况,还可指定跟踪对象,对指定对象在课堂中的状态进行统计分析,以便进行个体的针对性指导以及学习问题的及时矫正。刘邦奇等人则基于某中学智慧课堂常态化应用的真实数据,构建了师生互动指数分析模型,并进行了实证分析,为教育大数据的分析和应用,提供了一个应用参考实例。
从文献综述来看,目前,关于人工智能支持的学习参与度识别研究,主要针对的是面部表情识别,这依赖于可信的大数据集。美国心理学家Paul Ekman对5000多种面部运动,进行了分类,建立了开放的数据集,以帮助识别人类情绪,将这项研究提升到了一个新的层次。而我国尚没有建立面向学生面部识别的开放数据集,这有待于后续继续完善。同时,该方向的研究也已经扩展到应用领域。在过去三年里,美国有不少企业把面部识别技术应用到了一线教学当中,如SensorStar实验室用相机捕捉学生上课反应,使用一项叫做EngageSense的技术,运用算法来确定学生注意力是否转移,通过测量微笑、皱眉和声音来测定学生课堂参与度。
法国巴黎商学院于2017年9月,在两门在线课程中使用人工智能工具Nestor,其工作原理是利用计算机网络摄像头,跟踪学生的眼球运动和采集面部表情,再对收集到的数据进行分析,以评估学生的课堂参与度和注意力集中程度。我国的在线教育机构“好未来”,近日重点投资了基于表情识别技术研发的学习状态测评系统FaceThink,其情绪识别引擎可通过人脸检测、关键点跟踪检测,以及情绪识别等,准确识别用户的喜怒哀乐,实时分析用户情绪反馈。课堂场景的应用也已展开,如杭州某中学在2018年5月部署了“智慧课堂行为管理系统”用于对班级环境下学生的课堂行为进行分析,其结果为老师开展精准教学、调整教学策略提供参考。
纵观上述研究与应用,目前已有的分析方法,大多假定依赖某一类数据集即可直接测量学习参与度。但实际课堂教学场景和在线学习场景都并非如此,例如,当前中小学课堂较多采用的平板电脑教学,学习现场经多种传感器采集,在教学过程中得到的包含视觉、声音、学习系统日志记录三种模态的数据,是一种普遍存在的带有领域特征的多模态情境。其中视觉数据和声音数据是按一定频率采样的连续信号,而学习系统日志的产生,属于离散事件(相邻记录的间隔时间没有规律)。尽管,学习参与度识别向目前相对成熟的人脸识别和情感识别方向重点发展,具有一定的合理性。但其完全基于视觉研究的局限性,也是显而易见的(如遮挡问题、专注地闭眼冥想问题等,容易造成误判)。这种视觉自动化系统要在实际学习环境普及与应用,还有很多工作要做。
网址:人工智能在学习参与度识别中的应用现状与问题 https://mxgxt.com/news/view/137801
相关内容
GIPHYCelebrityDetector:解锁深度学习的名人识别新境界明星识别 名人识别小花儿人工智能
智能的本质与意识
AI人工智能技术在舆情监测平台的应用
智库 · 悦读 | 高度重视工人阶级在推动新质生产力发展中的作用
AI+音乐=?人工智能在音乐消费场景的中作用比想象的要大
深度解析:常见明星人脸识别数据集及其应用
探索模特与明星人脸数据集:解锁人脸识别新应用
粉丝文化的现状、问题与对策
人工智能会取代人类吗