big data 人工智能 面向文本数据的金融数据挖掘

发布时间:2025-05-18 13:35

1、项目概述

在金融领域中,由于投资的高风险性,金融行业需要更为准确和可靠的实时数据。知识图谱作为数据驱动的人工智能,能够存储金融资讯、行情等海量数据中包含的实体、关系和属性。金融知识图谱可以实现金融资讯推荐,风险控制评估,依据生成资讯的多维智能标签,精准掌握复杂信息中的隐藏风险。通过获取开源信息,基于知识图谱中大量金融资讯的关联信息,识别命名实体并提取其之间的业务往来关系,结合相关财经新闻,预测金融行业的走势。未来,基于知识图谱的金融数据平台,在信息隐含关联挖掘方面有着不可替代的能力,促进金融升级转型。

2、项目需求

本项目中选取的目标领域为手机和化妆品市场,作为商品中受众广泛,使用者众多的商品,手机和化妆品市场受外部信息影响较大,因此与其市场相关的数据获取较为容易。对于手机而言,在这个智能化的时代,手机成为每个人生活中的“必需品”,具有庞大的市场消费。手机品牌较多,市场竞争激烈,消费者的选择较广,而且易受外部信息的影响,对于厂商而言,可以通过外部信息进行针对性的营销,提高品牌的口碑、销量与价值。对于化妆品而言,其受众大多为女性用户,在进行商品的选择时,对于品牌的依赖性较高。同时,我们还要注意到,近几年,小红书等平台逐渐走红,频繁推出所谓“爆款”商品,可见对于化妆品来说,评测对于顾客的选择有着很大的影响。而一些商家也看准商机,通过水军制造许多虚假评测信息,面对众多信息,消费者在选择时要学会区分。 本次共分为四个模块进行:数据爬取,关键信息提取,实体链接,构建知识图谱。

3、用例

1、抽象用例:预测市场走势 2、高层用例: 系统:开始状态:使用爬虫获取数据。 结束状态:生成知识图谱 用户:开始状态:使用app了解信息。 结束状态:根据知识图谱做出决策。 3、扩展用例:大部分时间是系统内部自动更新知识图谱。

ActorSystem1、信息存入数据库2、读取数据库并提取关键字3、输入生成知识图谱命令4、将关键字链接起来并更新知识图谱5、返回知识图谱6、根据构建的知识图谱预测接下来的走势

4、用例图

系统先爬取网络上相关历史信息,这些信息经过关键信息提取,实体链接后生成知识图谱,同时系统还不断爬取实时信息以更新知识图谱。用户浏览当下的金融咨询,结合已生成的知识图谱,对未来的市场趋势进行预测。

5、数据库内容

由于我们需要不断将新的信息存储下来,因此我们需要一个数据库 其主要形式为: 商品数据库:

名称类型含义commodity_idstring商品idcommodity_sumint商品销量commodity_id_summentstring某一商品相关的评论timestring时间

小红书的数据库

名称类型含义art_idstring文章名称starint收藏量art_comstring文章的评论art_brandstring文章所介绍品牌

6、软件架构

我们采用简单的MVC架构即可。 其中模型用来存储数据库和知识图谱 视图提供用户与系统的交互(如添加信息) 控制器直接由用户使用 作者:209

查看原文

网址:big data 人工智能 面向文本数据的金融数据挖掘 https://mxgxt.com/news/view/1262644

相关内容

6款数据挖掘工具让你发现有价值数据
智能数据挖掘:科技与艺术的完美融合
10款AI数据挖掘神器,全面提升数据分析能力
揭秘:Python如何成为数据挖掘领域的明星工具,解锁数据洞察的秘密!
数据挖掘 用什么软件
Big Data Epoch: Challenges and Opportunities for Geology
数据挖掘 大数据 关系
如何挖掘直播流量数据呢
大数据挖掘算法实战:如何挖掘海量数据中的隐藏价值
数据挖掘方法与股价预测

随便看看