明星发明人识别与角色分析:来自机器学习领域的实证

发布时间:2025-05-07 10:36

明星发明人有助于提高企业研发创新绩效。目前对明星发明人的地位与功能探讨不足,导致企业无法全面掌握发明人信息,难以为研发活动招聘合适的人才。鉴于此,对机器学习领域明星发明人的领导、传播、知识或任务排他等功能和地位进行识别,采用动态网络分析方法确立六类明星发明人,即焦点型发明人、领导型发明人、潜在跨界型发明人、传播型发明人、任务排他型发明人和知识排他型发明人,分析其角色功能。结果表明:部分发明人同时拥有多种地位;领导型、焦点型和知识排他型明星发明人影响范围更广、职业流动性更强,与其他发明人的交互时间更长;隔离同时具有3种地位的明星发明人对焦点型发明人影响显著。

Abstract

Star inventors contribute to enterprises to improve the R&D innovation performance. At present, the research on star inventors lacks analysis of their status and function. Enterprises can not fully understand the information of inventors, which is not conducive to recruiting suitable talents for their R&D activities. This paper proposes to identify the functions and status of the star inventors in the field of machine learning, such as leadership, communication, knowledge or task exclusion. By using dynamic network analysis, we identify the focus inventor, the leading inventor, the potential trans-boundary inventor, the disseminated inventor, the task-exclusive inventor and the knowledge-exclusive inventor and analyze 6 kinds of roles in the machine learning technical field. Our results are threefold: ①some star inventors have multiple roles; ②star inventors with status of leader, focus and knowledge-exclusive have a wider range of effects, higher mobility, a longer duration of interaction with other inventors; ③the isolation of a triple-roles star inventor in the network has a significant impact on the focus inventor.

关键词

/明星发明人, 明星科学家, 角色分析, 动态网络分析, 机器学习

Key words

/Star Inventor, Star Scientist, Role Analysis, Dynamic Network Analysis, Machine Learning

吴菲菲, 李倩, 黄鲁成, 等.

0" m-for-array="{{authorList_cn}}" m-for-val="custom_author" m-for-index="custom_index">0">, {{custom_author.name_cn}}等.

明星发明人识别与角色分析:来自机器学习领域的实证[J]. 科技进步与对策, 2019, 36(14): 131-140 https://doi.org/10.6049/kjjbydc.2018100249

Wu Feifei, Li Qian, Huang Lucheng, et al.

0" m-for-array="{{authorList_en}}" m-for-val="custom_author" m-for-index="custom_index">0">, {{custom_author.name_en}}et al.

Identification and Role Analysis of Star Inventors: an Empirical Study on Machine Learning Technology[J]. Science & Technology Progress and Policy, 2019, 36(14): 131-140 https://doi.org/10.6049/kjjbydc.2018100249

参考文献

[1]NARIN F, BREITZMAN A.Inventive productivity[J]. Research Policy, 1995, 24(4): 507-519.
[2]ZUCKER L G, DARBY M R, ARMSTRONG J S. Commercializing knowledge: university science, knowledge capture, and firm performance in biotechnology[J].Management Science, 2002, 48(1): 138-153.
[3]ERNST H, LEPTIEN C, VITT J. Inventors are not alike: the distribution of patenting output among industrial R&D personnel[J]. IEEE Transactions on Engineering Management, 2002, 47(2):184-199.
[4]BLOMKVIST K, KAPPEN P, ZANDER I. Superstar inventors-towards a people-centric perspective on the geography of technological renewal in the multinational corporation[J].Research Policy, 2014, 43(4): 669-682.
[5]ALMEIDA P, HOHBERGER J, PARADA P. Individual scientific collaborations and firm-level innovation [J].Industrial & Corporate Change, 2012, 20(6): 1571-1599.
[6]BEAUDRYAB C. Impacts of collaboration and network indicators on patent quality: the case of Canadian nanotechnology innovation[J].European Management Journal, 2011, 29(5): 362-376.
[7]COHEN W M, LEVINTHAL D A. Adsorptive capacity: a new perspective on learning[J].Admi- nistrative Science Quarterly, 1990, 35(1): 128-152.
[8]COCKBURN I M, LACETERA N, HENDERSON R. Do firms change capabilities by hiring new people? a study of the adoption of science-based drug discovery[J].Advances in Strategic Management, 2004, 21(1): 133-159.
[9]PILKINGTON A, LEE L L, CHAN C K, et al. Defining key inventors: a comparison of fuel cell and nanotechnology industries[J].Technological Forecasting & Social Change, 2009, 76(1): 118-127.
[10]ROTA M, SCHETTINO F, SPINESI L. Key inventors, teams and firm performance: the italian case [J].Structural Change & Economic Dynamics, 2017(42): 13-25.
[11]SINGH J, FLEMING L. Lone inventors as sources of breakthroughs: myth or reality?[J].Social Science Electronic Publishing, 2010,56(1): 41-56.
[12]高杰, 丁云龙, 郑作龙. 中国创新研究群体合作网络的形成与演化机理研究——科学共同体视阈下优秀创新群体案例分析[J]. 管理评论, 2018, 30(3):248-263.
[13]柯江林, 孙健敏, 石金涛, 等. 企业R&D团队之社会资本与团队效能关系的实证研究——以知识分享与知识整合为中介变量[J]. 管理世界, 2007(3):89-101.
[14]孙笑明, 王静雪, 王成军, 等. 研发者专利合作网络中结构洞变化对企业创新能力的影响[J]. 科技进步与对策, 2018, 35(2): 116-122.
[15]GRIGORIOU K, ROTHAERMEL F T. Structural microfoundations of innovation: the role of relational stars.[J]. Journal of Management, 2014, 40(2):586-615.
[16]ZWICK T, FROSCH K, HOISL K, et al. The power of individual-level drivers of inventive performance[J].Research Policy, 2017, 46(1): 121-137.
[17]LORENZO F D, ALMEIDA P. The role of relative performance in inter-firm mobility of inventors [J].Research Policy, 2017, 46(6): 1162-1174.
[18]杨忠,文庭孝. 专利发明人影响力评价模型构建及实证研究——基于文献计量与社会网络分析双重视角[J].情报理论与实践, 2018, 41(9): 69-75.
[19]ZHANG G, DUAN H, ZHOU J. Network stability, connectivity and innovation out put[J].Technological Forecasting & Social Change, 2017(114): 339-349.
[20]MENON C. Stars and comets: an exploration of the patent universe[R].London: LSE, 2009.
[21]LI G C, LAI R, D'AMOUR A, et al. Disambiguation and co-authorship networks of the U.S. patent inventor database (1975-2010)[J].Research Policy, 2014, 43(6): 941-955.
[22]CARLEY K M. Dynamic network analysis[M].Washington: The National Academic Press, 2003.
[23]Ora: organizational risk analyzer[R]. Pittsburgh: CMU, 2004.
[24]AGRAWAL A, MCHALE J, OETTL A. How stars matter: recruiting and peer effects in evolutionary biology[J].Research Policy, 2017, 46(4): 853-867.
[25]TSENG C Y, TING P H. Patent analysis for technology development of artificial intelligence: a country-level comparative study[J].Innovation, 2013, 15(4): 463-475.

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

国家自然科学基金项目(71774009、71673018)

{{custom_fund}}

网址:明星发明人识别与角色分析:来自机器学习领域的实证 https://mxgxt.com/news/view/1031933

相关内容

[机器学习
人工智能和机器人的区别
社会名人:科学家与演艺明星的角色分析.docx
鄂维南院士:科学与智能——机器学习的新前沿、应用数学时代的曙光
机器学习与量子计算,全明星阵容能否讲出一个好故事?
语音识别 知识图谱 人工智能 机器学习 行业洞察
深度剖析协作机器人和工业机器人的区别:安全、灵活与交互差异
深度解析:目标检测领域的明星模型Faster R
利元亨:公司已经积累与机器人相关的包括AMR运动控制、传感与视觉技术、AI视觉识别、故障预测分析、运动轨迹控制以及AI深度学习应用等关键技术
人形机器人:未来的助手、伙伴与探索者

随便看看